Menyhért, Mirjam2019. augusztus 22., csütörtök
Tudomány

Agykutatás az élhetőbb időskorért

2019.01.08.MTA
National Geographic Magyarország

A Nemzeti Agykutatási Program által támogatott kutatás eredményei megkönnyíthetik az időskori demencia előrejelzését.

Forrás: Profimedia, Wavebreak

Az MTA TTK Agyi Képalkotó Központ kutatóinak cikkét az egészségügyi informatika területének legrangosabb folyóirata, a GigaScience közölte.

Hány éves az agy valójában? – A kérdés talán komolytalannak tűnhet, ám kutatók foglalkoznak a válasz megtalálásával, köztük a Magyar Tudományos Akadémia Természettudományi Kutatóközpont (TTK) munkatársai. A kutatás eredményei sokak időskorát tehetik élhetőbbé.

Agyunk az életünk során folyamatosan változik, fiatalkorunkban az agy hálózatainak szerkezete és működése egyre összehangoltabbá és kifinomultabbá válik, ahogy pedig öregedni kezdünk, ellenkező irányú folyamatok játszódnak le benne. A változások nemcsak az agy fizikai szerkezetében tapasztalhatók, hanem az egyes agyterületek működése közti összehangoltság mértékében is, amely az agyterületek között mérhető funkcionális kapcsolatok erősségének megváltozásával jól jellemezhető. E kapcsolatokat funkcionális mágneses rezonanciás képalkotással (fMRI) nagyszerűen lehet vizsgálni, és az eredmények megmutathatják, hogy a vizsgált agy kapcsolati mintázatának jellemzői mennyire felelnek meg a vizsgált személy valós életkorának. Ha az eltérés jelentős, akkor ez a kutatások szerint jól előre jelzi a kóros agyi öregedési folyamatokat, köztük a demenciát.

Márpedig igen fontos, hogy az efféle folyamatokra idejében fény derüljön, mivel a korai gyógyszeres beavatkozások és életmódváltás sokkal hatásosabb, mint a súlyosabb tünetek megjelenése utáni kezelés.

Az agyterületek működése közti kapcsolatok meglehetősen bonyolult hálózatot alkotnak, így egyáltalán nem nyilvánvaló, hogy milyen tulajdonságaik vannak kapcsolatban az életkorral. Kézenfekvő megoldásnak tűnt hát, hogy mesterséges intelligenciát vessenek be az elemzésére. A mélytanulásos (deep learning) rendszereket pedig éppen úgy be lehet tanítani az agyi kapcsolati hálózatok és az életkor közti összefüggésekre, mint például a kutyás és a macskás képek elkülönítésére. Vagyis egy mélytanulásos rendszer megfelelő számú egészséges agyról készült felvétel feldolgozása után „érezni” kezdi az agy korát, éppúgy, ahogy a másik példában a képen szereplő állat „kutyaságát” vagy „macskaságát”.

Tudásátadással a hatékonyabb tanulásért
Van azonban egy nagy eltérés a két helyzet között: míg a képfelismerés esetében a betanításhoz fotók millióit használhatják, a meglehetősen költségesen elkészíthető fMRI-felvételekből nagyságrendekkel kevesebb áll rendelkezésre. És ha ez még nem lenne elég, a különféle berendezéseken más és más beállításokkal készült fMRI-felvételek kapcsolati hálózatai annyira különböznek egymástól, hogy nem igazán lehet őket „összeönteni” és ezt az egységes adatbázist használni a mesterséges intelligencia betanítására.

Vidnyánszky Zoltán és a Nemzeti Agykutatási Program támogatásával működő kutatócsoportja a mélytanulásos rendszerek működési elvét felhasználva ügyes megoldást talált e probléma kiküszöbölésére. Az ilyen elven működő tanuló rendszerek ugyanis több egymásra épülő absztrakciós szinten dolgozzák fel a bemenet információit. Míg a legelső szinteken még sokat számítanak a bemenő adatok konkrét részletei, a felsőbb szinteken egyre elvontabb összefüggések jelennek meg a tanulás során. Így, például egy kutyákat és macskákat fotó alapján elkülönítő, betanított mélytanulásos rendszer alacsonyabb szintjei hatalmas eltérésekkel reagálnak egy csivava és egy bernáthegyi képére, de magasabb szinteken már egyértelműen a „kutyaság” dominál.

Vidnyánszkyék ötlete az volt, hogy az fMRI-felvételek egyszerű összeöntése helyett inkább a különféle mintákon betanított mesterséges intelligenciák magasabb absztrakciós szintjeinek adatait vegyék át. Abban reménykedtek, hogy így valamilyen mértékben képesek lesznek átvenni a mélytanulásos rendszerek „tudását”. Mintha – a fotók összeöntése helyett – a kizárólag fajtatiszta házikedvenceken megtanult „kutyaság” és „macskaság” fogalmait megalapozó belső, absztrakt adatokat átadhatnák egy másik tanuló rendszernek. Ez a másik rendszer pedig a keverék kutyákat ábrázoló képek vizsgálatát már az így átvett alaptudással kezdhetné.

Az MTA TTK Agyi Képalkotó Központban működő kutatócsoport eljárása sikeresnek bizonyult. „Az eljárásunk segítségével 5 évvel sikerült javítani a funkcionális konnektivitáson alapuló agyéletkorbecslés átlagos pontosságát. Ezt úgy sikerült elérnünk, hogy felhasználtuk a korábban, más adatbázison elsajátított tudást a becsléshez használt mesterséges neurális hálózat tanítása során. Ezt a korábban tanult kapcsolati súlyok átvételével és finomhangolásával végeztük a hálózat megfelelő rétegeiben. Kutatási eredményeink megoldást szolgáltattak a különböző MRI-berendezéssel, mérési paraméterekkel és eltérő szempontok szerint beválogatott embercsoportokon gyűjtött adatbázisok közötti tudástranszferre” – mondta el Vidnyánszky Zoltán.

A módszer fontos előrelépést jelent a kóros agyi öregedés mesterséges intelligenciával történő hatékonyabb előrejelzésében. Emellett segítséget nyújthat olyan, idegrendszeri képalkotáson alapuló speciális diagnosztikai feladatok megoldásában, ahol kevés adat áll rendelkezésre a mesterséges intelligenciák tanításához. A kutatócsoport jövőbeli kutatásainak célja, hogy módszertani fejlesztéseik eredményeire építve kidolgozzanak egy multimodális, strukturális és funkcionális MRI-képalkotáson alapuló mesterséges intelligenciával támogatott eljárást a kóros agyi öregedés korai kiszűrésére és típusainak osztályozására.

Hozzászólások

Élelmiszerek biztonságos tárolása

Élelmiszerek biztonságos tárolása

A hőmérséklet alapvetően befolyásolja a kémiai és a biológiai folyamatok reakciósebességét, így az élelmiszerek összetevőinek bomlása is hőmérsékletfüggő.

Humanoid robot költözik a Nemzetközi Űrállomásra

Humanoid robot költözik a Nemzetközi Űrállomásra

Csütörtökön különleges rakomány, egy humanoid robot indul a Nemzetközi Űrállomásra (ISS).

Egy exobolygó felszínére pillantott a Spitzer űrtávcső

Egy exobolygó felszínére pillantott a Spitzer űrtávcső

A bolygót 2018 decemberében fedezte fel a TESS műhold, majd a későbbi megfigyelések során érkeztek adatok a felszínéről is.

Gyík volt a négyszárnyú dinoszaurusz utolsó vacsorája

Gyík volt a négyszárnyú dinoszaurusz utolsó vacsorája

A húsevő dinoszaurusz kiváló megtartású kövületének tüzetesebb tanulmányozása során a kutatók váratlan felfedezésre jutottak.

Szupernóvából származó vasra bukkantak az Antarktiszon

Szupernóvából származó vasra bukkantak az Antarktiszon

2015-ben gyűjtötték be az Antarktiszon azt a hómintát, amelyből német kutatók most egy közeli szupernóva robbanására utaló vasat tudtak kivonni.

Ajánlataink

Egy lépéssel közelebb a demencia hatékonyabb kezeléséhez

Egy lépéssel közelebb a demencia hatékonyabb kezeléséhez

Az idegrendszer működésével kapcsolatos alapvető felfedezést tettek az MTA Természettudományi Kutatóközpontjának kutatói.

Memóriazavar, demencia, Alzheimer-kór

Memóriazavar, demencia, Alzheimer-kór

Az Alzheimer-kór a 21. század egyik népbetegségének számít, és az évszázad közepére várhatóan 130-150 millió érintett lesz.

National Geographic 2019. augusztusi címlap

Előfizetés

A nyomtatott magazinra,
12 hónapra

8 220 Ft

Korábbi számok

National Geographic 2010. januári címlapNational Geographic 2010. februári címlapNational Geographic 2010. márciusi címlapNational Geographic 2010. áprilisi címlapNational Geographic 2010. májusi címlapNational Geographic 2010. júniusi címlapNational Geographic 2010. júliusi címlapNational Geographic 2010. augusztusi címlapNational Geographic 2010. szeptemberi címlapNational Geographic 2010. októberi címlapNational Geographic 2010. novemberi címlapNational Geographic 2010. decemberi címlapNational Geographic 2011. januári címlapNational Geographic 2011. februári címlapNational Geographic 2011. márciusi címlapNational Geographic 2011. áprilisi címlapNational Geographic 2011. májusi címlapNational Geographic 2011. júniusi címlapNational Geographic 2011. júliusi címlapNational Geographic 2011. augusztusi címlapNational Geographic 2011. szeptemberi címlapNational Geographic 2011. októberi címlapNational Geographic 2011. novemberi címlapNational Geographic 2011. decemberi címlapNational Geographic 2012. januári címlapNational Geographic 2012. februári címlapNational Geographic 2012. márciusi címlapNational Geographic 2012. áprilisi címlapNational Geographic 2012. májusi címlapNational Geographic 2012. júniusi címlapNational Geographic 2012. júliusi címlapNational Geographic 2012. augusztusi címlapNational Geographic 2012. szeptemberi címlapNational Geographic 2012. októberi címlapNational Geographic 2012. novemberi címlapNational Geographic 2012. decemberi címlapNational Geographic 2013. januári címlapNational Geographic 2013. februári címlapNational Geographic 2013. márciusi címlapNational Geographic 2013. áprilisi címlapNational Geographic 2013. májusi címlapNational Geographic 2013. júniusi címlapNational Geographic 2013. júliusi címlapNational Geographic 2013. augusztusi címlapNational Geographic 2013. szeptemberi címlapNational Geographic 2013. októberi címlapNational Geographic 2013. novemberi címlapNational Geographic 2013. decemberi címlapNational Geographic 2014. januári címlapNational Geographic 2014. februári címlapNational Geographic 2014. márciusi címlapNational Geographic 2014. áprilisi címlapNational Geographic 2014. májusi címlapNational Geographic 2014. júniusi címlapNational Geographic 2014. júliusi címlapNational Geographic 2014. augusztusi címlapNational Geographic 2014. szeptemberi címlapNational Geographic 2014. októberi címlapNational Geographic 2014. novemberi címlapNational Geographic 2014. decemberi címlapNational Geographic 2015. januári címlapNational Geographic 2015. februári címlapNational Geographic 2015. márciusi címlapNational Geographic 2015. áprilisi címlapNational Geographic 2015. májusi címlapNational Geographic 2015. júniusi címlapNational Geographic 2015. júliusi címlapNational Geographic 2015. augusztusi címlapNational Geographic 2015. szeptemberi címlapNational Geographic 2015. októberi címlapNational Geographic 2015. novemberi címlapNational Geographic 2015. decemberi címlapNational Geographic 2016. januári címlapNational Geographic 2016. februári címlapNational Geographic 2016. márciusi címlapNational Geographic 2016. áprilisi címlapNational Geographic 2016. májusi címlapNational Geographic 2016. júniusi címlapNational Geographic 2016. júliusi címlapNational Geographic 2016. augusztusi címlapNational Geographic 2016. szeptemberi címlapNational Geographic 2016. októberi címlapNational Geographic 2016. novemberi címlapNational Geographic 2016. decemberi címlapNational Geographic 2017. januári címlapNational Geographic 2017. februári címlapNational Geographic 2017. márciusi címlapNational Geographic 2017. áprilisi címlapNational Geographic 2017. májusi címlapNational Geographic 2017. júniusi címlapNational Geographic 2017. júliusi címlapNational Geographic 2017. augusztusi címlapNational Geographic 2017. szeptemberi címlapNational Geographic 2017. októberi címlapNational Geographic 2017. novemberi címlapNational Geographic 2017. decemberi címlapNational Geographic 2018. januári címlapNational Geographic 2018. februári címlapNational Geographic 2018. márciusi címlapNational Geographic 2018. áprilisi címlapNational Geographic 2018. májusi címlapNational Geographic 2018. júniusi címlapNational Geographic 2018. júliusi címlapNational Geographic 2018. augusztusi címlapNational Geographic 2018. szeptemberi címlapNational Geographic 2018. októberi címlapNational Geographic 2018. novemberi címlapNational Geographic 2018. decemberi címlapNational Geographic 2019. januári címlapNational Geographic 2019. februári címlapNational Geographic 2019. márciusi címlapNational Geographic 2019. áprilisi címlapNational Geographic 2019. májusi címlapNational Geographic 2019. júniusi címlapNational Geographic 2019. júliusi címlapNational Geographic 2019. augusztusi címlap

Hírlevél feliratkozás

Kérjük, erősítsd meg a feliratkozásod az e-mailben kapott linkre kattintva!

Kövess minket